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Abstract The power and efficiency of parameter
estimation of four approximate maximum-likelihood
segregation-analysis methods for QTL detection were
numerically compared using Monte Carlo simulation.
The approximations were designed to avoid the long
computation required by exact maximum-likelihood
segregation analysis for populations composed of large,
independent half-sib families, as found in forest-tree
and animal-breeding programs. The methods were
compared both when information from a marker close-
ly linked to the QTL was available and when it was not.
Three of the approximations were from the literature:
the Modal-Estimation method initially developed by
Le Roy et al., an approximate Regressive Model from
Demenais and Bonney, and the Within-Sire method
used by Boichard et al. The fourth method was derived
from this Within-Sire method by ignoring between-
male-parent information and segregation within fami-
lies due to the alleles inherited from the female parents.
The relative advantages of the criteria are compared for
various hypotheses concerning the characteristics of
the QTL and the size of the population. No one
method was clearly superior over all situations studied.

The fourth, and simplest, method, however, performed
sufficiently well when marker data were available, par-
ticularly in terms of power, for it to provide a tool for
rapid preliminary screening of data from QTL map-
ping studies.

Key words QTL · Genetic marker · Likelihood ratio
test · Segregation analysis

Introduction

A large number of major genes influencing disease
sensitivity in humans have been found using
phenotypic and pedigree information. In crop plants, as
well as in forest trees, many studies have also reported
the existence of such major genes (e.g. Paterson et al.
1991; Bradshaw et al. 1994). To a lesser extent, major
genes controlling quantitative traits in farm animals
have been discovered by looking at the distribution of
phenotypes in controlled populations; for example:
double muscling in pigs (Ollivier 1980), low technolo-
gical yield of ham in pigs (Le Roy et al. 1990), and
prolificacy in sheep (Piper and Bindon 1982).

Evidence for these major genes was obtained from
observations of performance recorded in populations
in which the genes were segregating. The best statistical
method to help proving their existence is surely segre-
gation analysis, initially proposed by Elston and
Stewart (1971), and its generalisation, complex pedigree
analysis, proposed by Morton and McLean (1974).
This method is basically a maximum-likelihood
approach: given the phenotypes in the pedigree,
different models of inheritance are compared on the
basis of their likelihood. The most widely tested hy-
potheses are the polygenic (an infinite number of small
independent genes) versus the mixed inheritance (a ma-
jor gene plus an infinite number of small independent
genes).



Even when considering independent full- or half-sib
families, applying segregation-analysis methods to for-
est trees or livestock (Plomion and Durel 1996) popula-
tions requires a great deal of computing due to the very
large number of progeny as compared with human
pedigree structures. Simplified statistical criteria have
been proposed specifically for these structures (Le Roy
et al. 1989; Boichard et al. 1990).

The discovery of DNA polymorphisms and the de-
velopment of molecular biology tools, such as the PCR,
has boosted gene-mapping projects. Marker maps with
about one marker locus every 20 cM are becoming
available for tree species (pine: Devey et al. 1994;
Plomion et al. 1995; poplar: Bradshaw et al. 1994;
eucalyptus : Grattapaglia and Sederoff 1994; Byrne et
al. 1995) and the major animal species (pigs : Rohrer et
al. 1994; cattle : Barendse et al. 1994; Bishop et al. 1994;
sheep : Crawford et al. 1994). These maps allow easier
and better identification of quantitative trait loci (QTLs).
The principle is the identification, in the offspring of an
individual, of those which received one or the other of
the two chromosomal fragments surrounding the
studied marker. If a quantitative locus is located on this
fragment, and if the parent is heterozygous at both the
marker and the QTL, then a systematic difference will
be observed between the two groups of offspring. The
idea is old (Sax 1923), and its application to outbred
populations, where large families are recorded in the
classical context of selection schemes, has been studied
a number of times recently (Niemann—Sorensen and
Robertson 1961; Soller and Genizi 1978; Weller, Kashi
and Soller 1990; O’Malley and Mckeand 1994; Brad-
shaw and Stettler 1995).

The maximum-likelihood methods described above
may be generalised to situations where markers are
available. The first extensions to include markers con-
cerned human populations (MacLean et al. 1984; Risch
1984). Further extensions have been made for livestock
situations, including tests for monogenic transmission
in half sibs (Bovenhuis and Weller 1994; Le Roy and
Elsen 1994), and for mixed transmission in full sibs
(Knott and Haley 1992) and single half-sib families
(Georges et al. 1995). The numerical difficulties remain,
and specific simplifications when considering mixed
inheritance in large families are needed.

A least-squares approach applied to QTL detection
in crosses between lines seems to be an efficient alterna-
tive to maximum likelihood (Knapp et al. 1990; Haley
and Knott 1992; Haley et al. 1994). Considering mono-
genic inheritance in outbred populations, Le Roy and
Elsen (1994) found that the superiority of maximum
likelihood over least squares increases when the dis-
tance between the QTL and marker locus increases or
when the QTL effect decreases when considering link-
age to a single marker.

In the present paper, we compare different simplified
segregation-analysis methods using quantitative trait
measurements only or quantitative trait measurements

plus information from a linked marker. Their numer-
ical properties based on simulations (power and pre-
cision of parameter estimations) are described. The use
of one of these simplified methods in the case of mul-
tiple markers, and its comparison with least squares is
given elsewhere (Knott et al. 1996).

Methods

Models

General hypotheses and notation

The population studied was a set of s half-sib families each with
a common male parent and with d progeny per family. The s male
and sd female parents were assumed to be unrelated. y

ij
was the

performance of the j 5) progeny ( j"1,2 , d ) of the male
i (i"1,2 , s).

Under the mixed-inheritance hypothesis H
1
, a major gene was

segregating with two alleles A and B. The major genotype g of an
individual was AA, AB or BB. These three genotypes g

i
had prob-

abilities p
1
, p

2
and p

3
in the male-parent population and the A allele

frequency in the female-parent population was q. The major locus
genotype of the j 5) progeny of the i 5) male parent was g

ij
, with

c
i
"(g

i1
, g

i2
,2 , g

id
).

Under H
1
, within the major genotype, g, the trait was assumed to

be normally distributed, N (k
g
,p2). Under the polygenic-inherit-

ance hypothesis, H
0
, the trait was assumed to be normally distrib-

uted, N (0,p2), in the global population.
The male-parent effect u

i
of the i 5) male parent, that is half the

additive polygenic value G
i
, was assumed to be normally distrib-

uted, N (0,p2
u
). Given the major genotype (under H

1
) and the

male-parent effect u
i
, the residuals of progeny phenotype were dis-

tributed as normal, N (0,p2
e
).

The comparison of methods with a marker locus available was
based on the following assumptions: all the male parents were
heterozygous MN at the marker locus; the marker male-parent allele
was identifiable in all progeny; and the QTL and marker locus were
completely linked. M

i
and N

i
were the subsets of the progeny of

male parent i depending on the marker allele received from i (M, N).
Assuming linkage equilibrium in the male-parent population, the
four possible genotypes h

i
for these male parents (MA/NA, MA/NB,

MB/NA and MB/NB) were at frequencies p
1
,p

2
/2, p

2
/2 and

p
3

respectively.
The marker allele received by the j 5) progeny from its male parent

i was l
ij
, with l

i
"(l

i1
, l

i2
,2 , l

id
).

The density of y normally distributed, N (k, p2), was written as
f (y Dk,p) and, in the multidimensional situation, the density of the
observation vector y with mean k and variance-covariance matrix V,
was written as f (y Dk,V ).

In the following we describe only the H
1

hypothesis since the
algebra under H

0
can be directly deduced from this general situ-

ation. The exact likelihood will first be derived, followed by four
approximations. In each case, the corresponding test statistics are
approximated likelihood ratio tests, i.e. !2]log of the ratio of the
maximum of the approximate likelihoods under H

0
and H

1
.

¹he exact likelihood

Without any approximation, the likelihood ¸ without marker in-
formation of the (y

ij
, i"1,2 , s, j"1,2 , d) may be written as:

¸"

s
<
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+

g
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p (g
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p (c
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i
) f ( y

i
D (k

g
ij
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where the vector (k
g
ij

)ci is the vector (k
g
iÇ
, k

g
iÈ
,2 ,k

g
id

) correspond-
ing to the ci vector of major genotypes, and where V, the variance-
covariance matrix of one of the male-parent families, is given by:

V"I
d
p2
e
#J

d
p2
u
,

I
d
and J

d
being, respectively, the identity matrix and a matrix of 1s.

The conditional probabilities p (g
ij
/g

i
), elements of p (c i/gi

), are
a direct function of q, the A allele frequency of the female-parent
population.

The summation in ci comprises 2d or 3d terms, depending on g
i
. An

alternative formulation of ¸ avoids this difficulty:

¸"

s
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P
u
i
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i
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u
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p(g
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)
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+

g
ij

p (g
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i
.

Nevertheless, with this alternative formulation, new numerical diffi-
culties arise from the integration in u

i
.

When a marker is available, the likelihood ¸ is modified to
consider the additional information:

¸"

s
<
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+

h
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p (h
i
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The alternative formulation of the likelihood is now given by:

¸"

s
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First approximation: the modal estimation method ME
Le Roy et al. (1989) and Hoeschele (1988) proposed to approximate
the exact likelihood by the joint likelihood of the observations and
a ‘‘modal estimation’’, u

i
, of the male-parent effects u

i
. With this

approximation, the quadrature in male-parent effect, u
i
, is replaced

by a maximisation of the likelihood in u
i
, an iterative algorithm

based on the gradient method being proposed. An extension of this
method was proposed by Knott et al. (1991a, b) and by Elsen and Le
Roy (1990), where the male-parent effects were estimated within the
major genotype, g

i
. The method proved to be powerful and less

computationally demanding than the true segregation analysis. The
approximate likelihood ¸

ME
is given by:
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When a marker is available, this formula is modified accordingly:
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Second approximation: the regressive model RE
The regressive model was proposed by Bonney (1984, 1986). Its main
advantage is its flexibility for considering different patterns of stat-
istical dependencies. Demenais and Bonney (1989) proved the equi-
valence of the mixed (major gene#polygenic inheritance) and
‘‘class-D’’ regressive models, where equal sib-sib correlations are
considered. The numerical difficulties of the exact mixed-segrega-
tion analysis remains in the regressive model. Demenais et al. (1990)
compared approximations of the class-D model. Some of them
proved to be very efficient in terms of power and parameter esti-
mates. Their 4th approximation, similar to the approximation used
by Hasstedt (1982) in her PAP software for pedigree analysis, was
included in our comparison. Applying Bonney’s regressive model to

the half-sib structure considered here without phenotypic informa-
tion on parents, the true likelihood may be written as:
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Vj being the variance-covariance matrix of the y
i1

,2 , y
ij~1

.
The numerical diffculties result from the presence of the

k
g
il

(l"1,2 , j!1) in the m
ij
, i.e. before the summation in g

il
. In

the approximation proposed by Demenais et al. (1990), the mean
value k

g
il

is replaced by an averaged value k8
il

given by:
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This simplification gives the following approximate likelihood:
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When a marker is available the previous approximate likelihood
must be changed as follows:
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¹hird approximation: the within-sire method ¼S
Boichard et al. (1988) proposed another simplification based on the
distributional properties of the deviation of offspring phenotypes
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from the within-family mean, y
ij
!y

i
. The initial data yi were

linearly transformed in zi"Tyi , using the T matrix:
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i
,2 , y
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i
, y

i
). Thus the density of

zi conditional on li was proportional to the corresponding density of
yi , with E (zi/ci )"T .E (yi/ci ) and var (zi/ci)"T.V.T @.

The principle of the Boichard et al. (1988) method was to replace
the zi density by an asymptotic approximation. After some algebra,
it is found that:
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e AId~1
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J
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As the number d of progeny increases, the variance matrix W tends
to

A
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e
I
d~1
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0
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u
B .

Conditional on the genotypes g
i
and ci , the expectation of the

elements of zi are k
g
ij

!kci for j3[1, d!1] and kci"+d
j/1

k
g
ij

/d for
j"d. Conditional on g

i
alone, the quantity kci is a random variable

the distribution of which depends on the A allele frequency q in the
female parents. The expectation of this random variable depends on
g
i
:

g
i

"AA AB BB
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Asymptotically, E(zi/ci ) tends towards its expectation

k
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. Finally, Boichard et al. (1988) used, as
an approximate likelihood:
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This formula may be modified to consider the case where a marker is
available:
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Fourth approximation: only the within-family deviation method ¼O

This is a direct simplification of the previous method. It is assumed:
(1) that information from the variability among male-parent means
is limited as compared to the information from the variability

among within male-parent variances, (2) that the non-normality of
within-male-parent distribution is negligible in homozygous (AA or
BB) male-parent families as compared to heterozygous AB male-
parent families. With the first assumption, the f (z

id
"y

i
Dk

gi
,p

u
) term

is neglected. With the second assumption, the within AA (or BB)
male-parent distribution is assumed to be normal with a 0 expecta-
tion [0"qE(z
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/g

i
"AA, g
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"AA )#(1!q)E (z
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/g

i
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AB)] and variance p2
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; and the within-AB male-parent distribution
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w
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with a, the substitution effect (Falconer 1989): a
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"BB)]. The following result-

ing simplified likelihood is obtained:
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This likelihood should be modified when a marker is available:

¸
WO

"

s
<
i/1
GpC

d
<
j/1

f (z
ij
D0,p

w
)D

#

1!p

2 C <
j|M

f (z
ij
D a
2

,p
w
)D C <

j|N
f (z

ij
D! a

2
,p

w
)D

#

1!p

2 C <
j|M

f (z
ij
D!a

2
,p

w
)D C <

j|N
f (z

ij
D a
2

,p
w
)DH .

Comparison of the methods

A numerical evaluation of these methods was performed using
Monte Carlo simulation. Two population structures (10 or 20 male
parents with 100 progeny each) and six types of major genes (with 2,
1 or 0.5 phenotypic standard deviations between QTL genotypes AA
and BB, with complete dominance or additivity) were considered.
All the data were generated with a within-major-genotype variance
of 1 and an heritability of 0.20, giving p

u
"0.224 and p

e
"0.975. The

A allele frequency was 0.5 in the female parents and the male parents
(with the assumption of Hardy Weinberg equilibrium).

The simulations were written in Fortran using appropriate NAG
routines (G05CCF, G05DDF and G05CAF; Numerical Algorithms
Group 1990). Specific Fortran routines were written for computing
the likelihoods. These likelihoods were maximized with a quasi-
Newton algorithm from the NAG library (E04JBF). Two-thousand
replicate data sets were simulated under each H

0
and 200 under each

H
1

situation described above. The maximisation of the likelihood
under H

0
was obtained algebraically and under H

1
was carried out

from three different starting points based around the parameters
used to simulate the data, the best result being retained. The 10%
quantiles under H

0
were obtained with the Harrel and Davis (1982)

estimator. The estimated powers under H
1

were simply the propor-
tions of test-statistic values greater than these quantiles in the
sample of replicates. Eight parameters were estimated under H

1
for

the first three methods: the means k
1
, k

2
,k

3
, the variances p2

u
, p2

e
,

the genotype frequencies in the male-parent population p
1
, p

2
, and

the female-parent allele A frequency q. Three parameters were esti-
mated for the fourth method: the substitution effect a, the within-
family variance p2

w
, and the frequency of heterozygous male parents

(1!p).
From these parameters, we computed, for the first three methods:

a the additive effect of the gene [(k
3
!k

1
) /2]

d the dominance effect [k
2
!(k

1
#k

3
)/2] and

a the substitution effect as defined in the 4th model
Note that, a"a#d (1!2q), giving a"a when q"0.5.
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Table 2 Percentage of replicates
with a test statistic greater than
10% quantile of the distribution
of the test statistic under H0

Population Type of gene Power
structure (k

1
,k

2
,k

3
)

Without marker With marker

ME RE WS WO ME RE WS WO

10 males 0 0 2 100 100 100 99 100 100 100 100
0 0 1 28 33 19 32 97 91 99 97
0 0 0.5 14 13 17 16 57 31 30 49

0 1 2 41 46 35 39 100 100 100 98
0 0.5 1 17 17 12 19 98 89 91 96
0 0.25 0.5 10 15 11 14 57 27 33 51

20 males 0 0 2 100 100 100 100 99 100 100 100
0 0 1 47 49 41 43 100 100 100 99
0 0 0.5 15 7 17 14 78 40 49 74

0 1 2 40 63 53 52 97 100 100 100
0 0.5 1 10 22 14 14 100 98 98 100
0 0.25 0.5 10 15 14 9 72 48 47 72

Table 1 Test statistic distribution under H
0

Population Marker Test Mean Variance % 0! 10%
Quantile

10 males No ME 3.06 3.33 28 7.82
RE 4.96 3.20 3 9.16
WS 5.76 3.82 1 10.82
WO 0.63 1.38 62 2.22

Yes ME 1.34 2.77 57 4.97
RE 4.70 3.31 4 9.11
WS 4.81 3.70 4 9.71
WO 0.51 1.17 54 1.77

20 males No ME 2.52 3.33 38 7.23
RE 5.56 3.56 4 10.38
WS 5.38 3.57 1 10.14
WO 0.78 1.56 58 2.74

Yes ME 1.06 2.43 54 4.07
RE 4.93 3.28 4 9.69
WS 4.79 3.46 4 9.30
WO 0.55 1.26 52 1.78

!Percentage of zero test statistics

The quality of parameter estimates was characterised by the mean
and standard deviation of their empirical distribution.

Results

Computational efficiency

The CPU time needed on a 3090 IBM computer to
reach convergence was estimated on ten replications in
the situation of an additive QTL with two standard-
deviation effect, considering a population of 20 families.
Without markers, 35, 41, 36 and 3 s were respectively
needed for ME, RE, WS and WO methods to reach the
solution. With markers, the times needed were 30, 49,
22 and 1 s. These figures show clearly the large su-

periority of the simplest method, the three others not
being very different.

Distribution under H
0

The results are summarised in Table 1. Many simula-
tions gave a zero value for the Modal Estimation and
Within-sire-Only test statistics. This is a common
feature of these types of method. (e.g. McLachlan
and Basford 1987). Nevertheless, the results for the
situations with 10 and 20 male-parent families are rela-
tively consistent when comparing the distribution
characteristics.

Power

Table 2 gives the empirical power at the 10% level. As
expected, the power decreases with the effect of the gene
and with the number of male parents, with a few excep-
tions which are probably due to the limited number of
simulations.

Without marker information, a dominant gene with
an effect of two standard deviations between homo-
zygotes was detected by all methods. For the dominant
gene of intermediate effect, RE performed best and WS
worse, although for the gene of smallest effect this was
reversed. When the simulated gene was additive in
effect all approaches gave a lower power than that
observed for a dominant gene with the same additive
effect. Again, at intermediate powers (i.e. for the large
additive gene) RE performed better than the others.

The inclusion of marker information in the analysis
dramatically increased power, especially for the QTL
with an additive effect. QTLs with an additive effect of
0.5 or 1 (i.e. one or two standard deviations between
homozygotes) are detected in nearly all replicates
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Table 3 Mean parameter estimates for the first three approximations with the empirical standard deviation over the replicates in
parentheses. (20 male parent families)

Type of gene! Parameter Test statistics#
(k

1
, k

2
,k

3
) (true value)"

Without marker With marker

ME RE WS ME RE WS

0 0 2 a(1) 1.03 (1.03) 1.01 (0.15) 1.01 (0.14) 1.00 (0.07) 0.99 (0.09) 0.99 (0.09)
d(!1) !0.95 (0.19) !1.00 (0.23) !0.99 (0.22) !1.00 (0.10) !1.01 (0.13) !1.01 (0.12)
p
e
(0.975) 0.97 (0.03) 0.96 (0.03) 0.96 (0.03) 0.97 (0.02) 0.97 (0.02) 0.97 (0.02)

p
u
(0.224) 0.17 (0.07) 0.24 (0.08) 0.24 (0.05) 0.20 (0.04) 0.25 (0.06) 0.25 (0.04)

q(0.5) 0.50 (0.06) 0.50 (0.06) 0.51 (0.06) 0.51 (0.11) 0.50 (0.04) 0.50 (0.03)

0 1 2 a(1) 0.89 (0.21) 0.95 (0.49) 1.00 (0.21) 0.99 (0.18) 0.99 (0.32) 1.01 (0.20)
d(0) !0.07 (0.27) !0.22 (0.73) !0.02 (0.27) !0.07 (0.13) !0.03 (0.44) 0.00 (0.21)
p
e
(0.975) 1.02 (0.07) 1.00 (0.06) 0.97 (0.09) 0.99 (0.03) 1.00 (0.05) 0.98 (0.04)

p
u
(0.224) 0.19 (0.12) 0.22 (0.12) 0.21 (0.06) 0.21 (0.05) 0.24 (0.07) 0.24 (0.04)

q(0.5) 0.49 (0.14) 0.43 (0.25) 0.50 (0.20) 0.51 (0.12) 0.45 (0.26) 0.50 (0.18)

0 0 1 a(0.5) 0.69 (0.16) 0.70 (0.27) 0.57 (0.26) 0.52 (0.11) 0.53 (0.19) 0.48 (0.17)
d(!0.5) !0.33 (0.27) !0.47 (0.41) !0.62 (0.33) !0.48 (0.17) !0.58 (0.26) !0.61 (0.26)
p
e
(0.975) 0.96 (0.05) 0.94 (0.05) 0.94 (0.05) 0.97 (0.03) 0.96 (0.03) 0.95 (0.04)

p
u
(0.224) 0.14 (0.09) 0.17 (0.10) 0.20 (0.07) 0.19 (0.06) 0.23 (0.08) 0.23 (0.05)

q(0.5) 0.53 (0.14) 0.56 (0.22) 0.54 (0.20) 0.51 (0.08) 0.53 (0.15) 0.50 (0.14)

0 0.5 1 a(0.5) 0.61 (0.17) 0.67 (0.39) 0.65 (0.34) 0.50 (0.11) 0.54 (0.39) 0.55 (0.32)
d(0) !0.19 (0.33) !0.16 (0.65) !0.02 (0.52) !0.02 (0.19) !0.06 (0.59) !0.05 (0.50)
p
e
(0.975) 0.96 (0.06) 0.94 (0.05) 0.94 (0.05) 0.97 (0.02) 0.96 (0.03) 0.96 (0.03)

p
u
(0.224) 0.18 (0.10) 0.16 (0.11) 0.18 (0.07) 0.21 (0.07) 0.22 (0.08) 0.23 (0.06)

q(0.5) 0.50 (0.12) 0.44 (0.28) 0.50 (0.29) 0.49 (0.07) 0.44 (0.29) 0.49 (0.27)

0 0.5 a(0.25) 0.59 (0.16) 0.50 (0.65) 0.52 (0.34) 0.40 (0.13) 0.46 (0.39) 0.45 (0.30)
d(!0.25) !0.26 (0.32) !0.40 (0.75) !0.44 (0.54) !0.13 (0.28) !0.36 (0.58) !0.29 (0.59)
p
e
(0.975) 0.95 (0.06) 0.93 (0.05) 0.91 (0.06) 0.96 (0.03) 0.94 (0.04) 0.93 (0.05)

p
u
(0.224) 0.16 (0.09) 0.16 (0.09) 0.17 (0.06) 0.16 (0.07) 0.19 (0.08) 0.21 (0.05)

q(0.5) 0.50 (0.14) 0.52 (0.28) 0.49 (0.29) 0.51 (0.07) 0.55 (0.27) 0.51 (0.26)

0 0.25 0.5 a(0.25) 0.60 (0.20) 0.55 (0.38) 0.58 (0.44) 0.38 (0.12) 0.44 (0.37) 0.39 (0.27)
d(0) !0.22 (0.38) !0.25 (0.67) !0.03 (0.73) !0.03 (0.27) !0.19 (0.72) !0.01 (0.65)
p
e
(0.975) 0.94 (0.06) 0.91 (0.05) 0.91 (0.05) 0.96 (0.02) 0.92 (0.05) 0.92 (0.05)

p
u
(0.224) 0.17 (0.09) 0.13 (0.09) 0.16 (0.06) 0.16 (0.07) 0.18 (0.09) 0.21 (0.06)

q(0.5) 0.49 (0.13) 0.52 (0.28) 0.53 (0.29) 0.50 (0.06) 0.51 (0.26) 0.49 (0.24)

!The simulated effect of the QTL genotypes in within-QTL-genotype standard deviations
"a is the additive effect at the QTL, d is the dominance effect, p

e
is the residual standard deviation, p

u
is the between male-parent standard

deviation and q is the female-parent allele frequency (see text for more detailed descriptions)
#ME"modal estimation, RE"regressive and WS"within-sire method

whether their effect is additive or dominant. For both
the additive and dominant QTLs with smallest effect
WO and ME have higher power, especially with the
higher number of male parents.

Parameter estimates

Table 3 gives the means and standard deviations of the
estimates for the additive and dominance effects of the
QTL, the variances and the female-parent A allele
frequency for the first three methods (ME, RE and WS).
The results are shown for the population of 20-male-
parent families, the 10-male-parent-families population
behaving quite similarly. For the largest gene the esti-
mates for the effect of the QTLs are unbiased with all
three methods giving similar precision. With smaller

effect genes, the additive effect is overestimated, with an
increasing bias as the gene effect diminishes. The inclu-
sion of the marker information decreases the bias for
the smaller effect genes, such that the estimates for the
intermediate gene now look correct, although the
smallest gene effect is still overestimated. Considering
the dominance effect, WS is, on average, better when
additive QTLs are simulated but the standard errors
are high. The estimates from ME are more precise for
the smaller effect genes.

The male-parent variance, p2
u
, is underestimated ex-

cept in situations with the large QTLs analysed using
RE or WS. WS gives the best results with highest
precision and ME the worst. The estimates are less
biased when marker information is included and when
more male parents (20 compared with 10 male parents)
are incorporated in the analysis (data not shown).
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Table 4 Mean parameter
estimates for the all four
approximations with the
empirical standard deviation
over the replicates in parentheses.
(20 male parent families)

Type of gene! Parameter" Test statistics
(k

1
,k

2
,k

3
) (true value)

ME# RE WS WO

Without marker
0 0 2 a(1) 0.99 (0.21) 1.02 (0.22) 1.02 (0.20) 1.74 (0.12)

p
2
(0.5) 0.51 (0.12) 0.48 (0.14) 0.47 (0.14) 0.28 (0.10)

0 1 2 a(1) 0.88 (0.24) 0.80 (0.70) 0.98 (0.36) 1.16 (0.26)
p
2
(0.5) 0.34 (0.24) 0.36 (0.21) 0.46 (0.20) 0.33 (0.33)

0 0 1 a(0.5) 0.70 (0.26) 0.76 (0.58) 0.60 (0.46) 0.96 (0.32)
p
2
(0.5) 0.42 (0.28) 0.37 (0.28) 0.34 (0.30) 0.37 (0.31)

0 0.5 1 a(0.5) 0.62 (0.24) 0.64 (0.80) 0.68 (0.68) 0.82 (0.32)
p
2
(0.5) 0.30 (0.32) 0.27 (0.28) 0.29 (0.28) 0.41 (0.41)

0 0 0.5 a(0.25) 0.62 (0.24) 0.50 (1.26) 0.52 (0.68) 0.72 (0.38)
p
2
(0.5) 0.31 (0.33) 0.27 (0.33) 0.32 (0.34) 0.41 (0.39)

0 0.25 0.5 a(0.25) 0.64 (0.36) 0.62 (0.76) 0.68 (0.86) 0.64 (0.36)
p
2
(0.5) 0.33 (0.35) 0.27 (0.30) 0.23 (0.30) 0.53 (0.41)

With marker
0 0 2 a(1) 1.02 (0.11) 0.98 (0.14) 0.98 (0.14) 0.98 (0.10)

p
2
(0.5) 0.51 (0.11) 0.49 (0.11) 0.49 (0.11) 0.48 (0.12)

0 1 2 a(1) 0.90 (0.68) 0.96 (0.60) 1.02 (0.38) 0.98 (0.08)
p
2
(0.5) 0.49 (0.20) 0.49 (0.11) 0.51 (0.11) 0.50 (0.11)

0 0 1 a(0.5) 0.52 (0.18) 0.54 (0.38) 0.44 (0.34) 0.48 (0.12)
p
2
(0.5) 0.51 (0.17) 0.51 (0.16) 0.51 (0.17) 0.44 (0.23)

0 0.5 1 a(0.5) 0.50 (0.16) 0.52 (0.76) 0.58 (0.64) 0.48 (0.12)
p
2
(0.5) 0.54 (0.18) 0.52 (0.19) 0.47 (0.18) 0.44 (0.21)

0 0 0.5 a(0.25) 0.42 (0.18) 0.54 (0.76) 0.52 (0.60) 0.26 (0.14)
p
2
(0.5) 0.34 (0.29) 0.38 (0.34) 0.35 (0.32) 0.31 (0.37)

0 0.25 0.5 a(0.25) 0.40 (0.16) 0.52 (0.80) 0.42 (0.52) 0.26 (0.14)
p
2
(0.5) 0.34 (0.31) 0.29 (0.28) 0.36 (0.33) 0.39 (0.37)

! The simulated effect of the QTL genotypes in within-QTL-genotye standard deviations
" a is the substitution effect at the QTL, p

2
the male-parent heterozygote frequency (see text for

more detailed descriptions)
# ME"modal estimation, RE"regressive, WS"within-sire ad WO"only-within-family devi-
ation method

The estimate of the female-parent allele frequency is
unbiased with the three methods but not very precise.
In general, the empirical standard deviation of the
estimate decreases as the simulated effect of the QTL
increases. The standard deviations from ME are the
lowest and improve further when markers are incorp-
orated in the analysis.

The comparison of the first three methods with WO
are given in Table 4. The substitution effect, a, and the
frequency of heterozygous male parents are considered
As expected, given the results above, when marker
information is not available, the substitution effect is
overestimated for the smaller effect QTL with the first
three methods. For the largest QTL WO gives a more
biased estimate than the other methods, especially
when more male parents are included in the analysis
(data not shown). With marker information the perfor-
mance of WO improves, giving unbiased estimates of
the substitution effect for all QTLs. The estimates are
also more precise than with the other approximations.
The male-parent heterozygote frequency is not well
estimated except when the effect of the QTL is large.
The inclusion of marker information reduces the bias.
Using WO the estimate increases as the QTL effect

decreases when marker information is not available,
and decreases with QTL effect when a marker is used.
This is in contrast with the other approaches which
tend to give increasing underestimates with decline in
QTL effect both with and without markers.

Discussion

Four approximations to the likelihood for QTL detec-
tion in a progeny test design have been presented. The
first three give a more precise description of the situ-
ation, with eight parameters describing the within-
genotype means and variances and the QTL genotype
frequency in the male parents and the allele frequency
in the female parents. On the other hand, the fourth
approximation (WO), using additional assumptions
concerning the distribution, involves only three para-
meters, mixing the distribution components described
in the others.

In this paper, we focused on maximum likelihood
partly because it is the more widely used technique in
classical segregation analysis and in order to measure
directly the usefulness of marker information for QTL
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detection. However, other approaches are possible in-
cluding the least-squares method (Haley and Knott
1992) and non-parametric tests (Lander and Kruglyak
1995).

Due to the very large amount of computation re-
quired, this study has been based on a limited number
of replications (200 under each H

1
), thus limiting the

precision of the comparisons. Nevertheless, consistent
patterns have been observed, which enables general
conclusions to be drawn. In particular, ME and WO
methods appear to be more powerful in linkage analy-
sis, even though all the methods yield reasonable para-
meter estimations. In the without-marker situation, the
comparison of power and parameter estimation seemed
to reveal a constant pattern, with the RE method gener-
ally performing better in terms of power.

Thus, despite the additional simplification, the power
of the fourth approach is comparable with the more-
complicated approximations. The parameter estimates
give a less-complete description of the QTL and its
effect, but when a marker is available the estimate for
the substitution effect is unbiased and precise; the fre-
quency of heterozygous male parents, however, is not
well estimated. The reduction in the number of
parameters enables much faster computation and
hence, this fourth approach should be used as a first
a step, similar to other simple test statistics which have
been proposed for preliminary data exploration (see Le
Roy and Elsen 1992 for a review) or for a rapid screen-
ing of the genome when markers are available. Sub-
sequent analysis could then be performed in the area of
interest, thus allowing a more complete description of
the QTL.

From a comparison of the other approximations it is
not clear that any one method is always consistently
preferable to the others. When marker information is
not available, RE seems to perform better in terms of
power. Considering parameter estimates, however,
none is consistently better than the others. With
marker information ME gives higher power than the
other two approximations and parameter estimates are
reasonable.

These approaches were compared here in extreme
situations where either no marker or a unique totally
linked marker were available. In practice, recorded
individuals may have sets of genetic markers put on
their genome, and the amount of marker information
will vary from individual to individual and from place
to place on the chromosomes. In these circumstances,
information may be fully exploited by multilocus ap-
proaches as described for instance by Haley et al.
(1994). In a companion paper (Knott et al. 1996), we
propose an extension of this approach to the case of
half-sib families in outbred populations, using either
the least squares method or our ‘‘only within-family
deviation method’’.

Robustness was not evaluated in this paper. All four
approximations compared were based on an identical

parametric model assuming normality of within-QTL
genotype performances and are probably similar in
their behaviour to non-respect of this hypothesis.

Any complicating factors such as fixed effects have
been omitted. Large half-sib families are required and,
hence, data will be obtained from existing populations
that will be distributed over a number of plots or years,
for example. All of the likelihoods presented can be
extended to take account of these effects. Nonetheless,
there may be difficulties due to the increased computa-
tion required in order to calculate the likelihood and
estimate the parameters of interest.

It has been implicitly assumed that possible familial
relations between male and female parents should not
change the classification between methods. A more
complete treatment of QTL detection in a progeny test
design should consider these genetic relationships.
While much more complicated in their algebraic and
computational developments, such methods are
already available using peeling (Hasstedt 1982) or
Gibbs sampling (Guo and Thompson 1994). The extra
power and robustness given by a correct consideration
of these relations are still to be evaluated in the large-
sized progeny test design often used in plant and
animals.

Our H
0

hypothesis considered a polygenic inherit-
ance described by an additive genetic effect with a 0.2
heritability. Thus, implicitly, H

0
dealt with unlinked

QTLs. In theory, it might be possible to extend models
and associated likelihoods to situations with a major
unlinked QTL. More generally, an oligogenic inherit-
ance with a finite number of QTLs could be considered.
However, computation would become tedious, if not
impossible, in practice. Moreover, there is no obvious
reason why extra differences between the compared
methods should be found in these situations.

A major difficulty when using the maximum-likeli-
hood method is the behaviour of the test statistic when
H0 holds, as the distribution of the test cannot be
predicted at present. In this paper, the rejection thre-
sholds were obtained by simulation, with 2000 repli-
cates. Real situations will be much more complicated,
in particular in multilocus approaches. Simulations can
be used or a permutation test applied (Churchill and
Doerge 1994) if the test statistics can be rapidly com-
puted. However, since the thresholds vary between
traits, permutation tests have to be performed for all
traits successively. Approximations were recently pro-
posed for the computation of thresholds (Rebai et al.
1994) for simple situations found in plant breeding; an
effort should be made to extend these to outbred popu-
lation structures.
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